首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18327篇
  免费   2189篇
  国内免费   1002篇
电工技术   308篇
综合类   923篇
化学工业   4075篇
金属工艺   6097篇
机械仪表   961篇
建筑科学   379篇
矿业工程   453篇
能源动力   405篇
轻工业   273篇
水利工程   11篇
石油天然气   293篇
武器工业   271篇
无线电   1074篇
一般工业技术   3588篇
冶金工业   2162篇
原子能技术   107篇
自动化技术   138篇
  2024年   57篇
  2023年   413篇
  2022年   621篇
  2021年   677篇
  2020年   792篇
  2019年   613篇
  2018年   561篇
  2017年   778篇
  2016年   665篇
  2015年   679篇
  2014年   984篇
  2013年   929篇
  2012年   1171篇
  2011年   1424篇
  2010年   954篇
  2009年   1071篇
  2008年   905篇
  2007年   1178篇
  2006年   1192篇
  2005年   897篇
  2004年   850篇
  2003年   782篇
  2002年   648篇
  2001年   556篇
  2000年   471篇
  1999年   293篇
  1998年   241篇
  1997年   184篇
  1996年   158篇
  1995年   127篇
  1994年   99篇
  1993年   84篇
  1992年   106篇
  1991年   90篇
  1990年   88篇
  1989年   81篇
  1988年   23篇
  1987年   9篇
  1986年   11篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   10篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
2.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
3.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
4.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
5.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
6.
The use of a Pt-based catalyst was evaluated for autocatalytic hydrogen recombination. The Pt was supported on a mixture of Ce-, Zr- and Y-oxides (CZY) to yield nanosized Pt particles. The Pt/CZY/AAO catalyst was then prepared by the spray-deposition of the Pt/CZY intermediate onto an anodized aluminium oxide (AAO) layer on a metallic aluminum core. The Pt/CZY/AAO catalyst (3 × 1 cm) was evaluated for hydrogen combustion (1–8 vol% hydrogen in the air) in a recombiner section testing station. The thermal distribution throughout the catalyst surface was investigated using an infrared camera. The maximum temperature gradient (ΔT) for the examined hydrogen concentrations did not exceed 36 °C. The Pt/CZY/AAO catalyst was also evaluated for prolonged hydrogen combustion duration to assess its durability. An average combustion temperature of 239.0 ± 10.0 °C was maintained for 53 days of catalytic hydrogen combustion, suggesting that there was limited, or no, catalyst deactivation. Finally, a Pt/CZY/AAO catalytic plate (14.0 × 4.5 cm) was prepared to investigate the thermal distribution. An average surface temperature of 212.5 °C and a maximum ΔT of 5.4 °C was obtained throughout the catalyst surface at a 3 vol% hydrogen concentration.  相似文献   
7.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
8.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
9.
潘杰  李焰 《化工进展》2020,39(11):4503-4515
化学转化膜是金属表面主要的处理方法之一,具备良好的附着力和耐蚀性,能为铝合金提供一定的临时防护。传统的六价铬酸盐化学转化膜在日渐严苛的环保压力下已经逐渐淘汰,取而代之的是近几年发展迅猛的三价铬及无铬锆基化学转化膜。铝合金可分为铸造铝合金和变形铝合金,按照所含主要合金元素和热处理状态可分为若干个系列和型号。本文选取几种典型的变形铝合金,综述了不同铝合金微观组织对转化膜成膜过程的影响,化学转化液添加剂、预处理和后处理工艺对转化膜性能的调控及作用机理,以及几种典型商业钝化剂在变形铝合金表面的应用。总结了目前变形铝合金表面锆基化学转化膜仍面临的问题和发展趋势,未来化学转化膜需在满足新型铝合金发展要求的基础上,通过不同有机、无机添加剂以及外场作用对转化膜的成膜均一性、完整性进行调控,以提高转化膜的综合性能。  相似文献   
10.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号